Equivalence in Non-Recursive Structural Equation Models
نویسنده
چکیده
Introduction In the last decade, there has been considerable progress in understanding a certain class of statistical models, known as directed acyclic graph (DAG) models, which encode independence, and conditional independence constraints. (See Pearl, 1988). This research has had fruitful results in many areas: there is now a relatively clear causal interpretation of these models, there are efficient procedures for determining the statistical indistinguishability of DAG’s, reliable algorithms for generating a class of DAG models from sample data and background knowledge, etc. Two important elements in these investigations were: First, a purely graphical condition for calculating the conditional independence relations entailed by a DAG. Second, a ‘local’ characterization of equivalence between two graphs, in the sense that all of the same conditional independencies are entailed by each graph. Such a local characterization was essential in allowing the construction of efficient algorithms which could search the whole class of DAG models and to find those which fitted the given data.
منابع مشابه
Directed cyclic graphs, conditional independence, and non-recursive linear structural equation models
Recursive linear structural equation models can be represented by directed acyclic graphs. When represented in this way, they satisfy the Markov Condition. Hence it is possible to use the graphical d-separation to determine what conditional independence relations are entailed by a given linear structural equation model. I prove in this paper that it is also possible to use the graphical d-separ...
متن کاملBayesian Discovery of Linear Acyclic Causal Models
Methods for automated discovery of causal relationships from non-interventional data have received much attention recently. A widely used and well understood model family is given by linear acyclic causal models (recursive structural equation models). For Gaussian data both constraint-based methods (Spirtes et al., 1993; Pearl, 2000) (which output a single equivalence class) and Bayesian score-...
متن کاملDiscovering cyclic causal structure
This paper is concerned with the problem of making causal inferences from observational data, when the underlying causal structure may involve feedback loops. In particular, making causal inferences under the assumption that the causal system which generated the data is linear and that there are no unmeasured common causes (latent variables). Linear causal structures of this type can be represe...
متن کاملIdentification and Likelihood Inference for Recursive Linear Models with Correlated Errors
In recursive linear models, the multivariate normal joint distribution of all variables exhibits a dependence structure induced by recursive systems of linear structural equations. Such models appear in particular in seemingly unrelated regressions, structural equation modelling, simultaneous equation systems, and in Gaussian graphical modelling. We show that recursive linear models that are ‘b...
متن کاملRecursive Causality in Bayesian Networks and Self-Fibring Networks
So causal models need to be able to treat causal relationships as causes and effects. This observation motivates an extension the Bayesian network causal calculus (Section 2) to allow nodes that themselves take Bayesian networks as values. Such networks will be called recursive Bayesian networks (Section 3). Because recursive Bayesian networks make causal and probabilistic claims at different l...
متن کامل